

TD1

SUITES.

Exercice 1.- ECRICOME 2005 (extrait).

On considère la fonction f définie par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = x^2 - x \ln(x) - 1 \quad \text{et} \quad f(0) = -1.$$

ainsi que les fonctions φ et g définies par :

•
$$\forall x \in \mathbb{R}_+^*, \quad \varphi(x) = \frac{2}{x} + \ln(x)$$

•
$$\forall (x;y) \in \mathbb{R}^2$$
, $g(x;y) = xe^y - ye^x$.

On donne le tableau de valeurs de f:

x =	0,5	1	1,5	2	2,5	3	3, 5	4
$f(x) \simeq$	-0, 4	0	0, 6	1,6	3	4, 7	6, 9	9, 5

I. Étude de deux suites associées à f.

- 1. Montrer que f est continue sur \mathbb{R}_+ .
- 2. Étudier la dérivabilité de la fonction f en 0. En donner une interprétation graphique.
- 3. Étudier la convexité de f sur \mathbb{R}_+^* , puis dresser son tableau de variations en précisant la limite de f(x) lorsque x tend vers l'infini.
- 4. Montrer que f réalise une bijection de \mathbb{R}_+^* sur un intervalle J que l'on précisera.
- 5. Quel est le sens de variation de f^{-1} ? Déterminer la limite de $f^{-1}(x)$ lorsque x tend vers l'infini.
- 6. a. Justifier que pour tout entier naturel k, il existe un unique réel x_k positif tel que $f(x_k) = k$.
 - **b.** Donner la valeur de x_0 .
 - c. Utiliser le tableau de valeurs de f pour déterminer un encadrement de x_1 et x_2 .
 - **d.** Exprimer x_k à l'aide de f^{-1} puis justifier que la suite (x_k) est croissante et déterminer sa limite lorsque k tend vers l'infini.
- 7. On définit la suite (u_n) par : $u_0 = \frac{3}{2}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \varphi(u_n)$
 - **a.** Étudier les variations de φ sur \mathbb{R}_+^* .
 - **b.** On donne $\varphi(\frac{3}{2}) \simeq 1,73$ et $\varphi(2) \simeq 1,69$. Montrer que $\varphi\left(\left[\frac{3}{2};2\right]\right) \subset \left[\frac{3}{2};2\right]$.
 - **c.** En étudiant les variations de φ' , montrer que : $\forall x \in \left[\frac{3}{2}; 2\right], \quad |\varphi'(x)| \leqslant \frac{2}{9}$.

- d. Montrer que les équations $x = \varphi(x)$ et f(x) = 1 sont équivalentes. En déduire que le réel x_1 est l'unique solution de l'équation $x = \varphi(x)$.
- **e.** Montrer successivement que pour tout entier n:

$$\frac{3}{2} \leqslant u_n \leqslant 2$$
 ; $|u_{n+1} - x_1| \leqslant \frac{2}{9} |u_n - x_1|$; $|u_n - x_1| \leqslant \left(\frac{2}{9}\right)^n$.

f. En déduire la limite de la suite (u_n) .

II. Recherche d'extremum éventuel de g (Cubes).

- 1. Calculer les dérivées partielles premières de la fonction q.
- **2.** Montrer que si g admet un extremum local en (a;b) de \mathbb{R}^2 , alors : $\begin{cases} ab=1\\ a=e^{a-\frac{1}{a}} \end{cases}$

En déduire que nécessairement $\begin{cases} a>0\\ ab=1\\ f(a)=0 \end{cases}$ puis que le seul point où g peut admettre un extremum est le couple (1;1).

- 3. Calculer les dérivées partielles secondes de la fonction g.
- **4.** La fonction g admet-elle un extremum local sur \mathbb{R}^2 ?

Exercice 2.- ECRICOME 2001 (extrait).

On désigne par n un entier naturel non nul et a un réel strictement positif. On se propose d'étudier les racines de l'équation :

$$(E_n)$$
: $\frac{1}{x} + \frac{1}{x+1} + \frac{1}{x+2} + \ldots + \frac{1}{x+2n} = a$

À cet effet, on introduit la fonction f_n , de la variable réelle x définie par :

$$f_n(x) = \frac{1}{x} + \frac{1}{x+1} + \frac{1}{x+2} + \dots + \frac{1}{x+2n} - a$$

- I. Étude d'un cas particulier. Pour cette question seulement, on prend $a = \frac{11}{6}$ et n = 1.
 - 1. Représenter la fonction f_1 relativement à un repère orthonormal du plan. (unité graphique 2 cm)
 - 2. Calculer $f_1(1)$, puis déterminer les racines de (E_1) . (On donne $\sqrt{37} = 6{,}08$ à 10^{-2} près par défaut)

II. Dénombrement des racines de (E_n) .

- 1. Dresser le tableau de variations de f_n .
- 2. Justifier l'existence de racines de l'équation (E_n) et en déterminer le nombre.
- III. Équivalent de la plus grande des racines quand n tend vers $+\infty$. On note x_n la plus grande des racines de (E_n) .
 - 1. Justifier que $x_n > 0$.
 - 2. Démontrer que pour tout réel x > 1:

$$\frac{1}{x} < \ln \frac{x}{x-1} < \frac{1}{x-1}$$

En déduire que pour x réel strictement positif

$$f_n(x) - \frac{1}{x} + a < \ln\left(1 + \frac{2n}{x}\right) < f_n(x) - \frac{1}{x+2n} + a$$

TD1

3

puis, que:

$$a - \frac{1}{x_n} < \ln\left(1 + \frac{2n}{x_n}\right) < a - \frac{1}{x_n + 2n}$$

3. Montrer que pour tout n entier naturel, non nul :

$$x_n > \frac{2n}{e^a - 1}$$

- **4.** Quelle est la limite de x_n , puis la limite de $\ln\left(1+\frac{2n}{x_n}\right)$, lorsque n tend vers $+\infty$?
- 5. Prouver enfin l'existence d'un réel δ , que l'on exprimera en fonction de a, tel que l'on ait, au voisinage de l'infini, l'équivalent suivant

$$x_n \underset{n \to +\infty}{\sim} \delta.n$$